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Aerocapture uses atmosphere of a planetary body to achieve orbit insertion

Aerocapture is an atmospheric maneuver where aerodynamic forces are used to transfer a spacecraft from
a hypersonic orbit to a targeted capture orbit. Aerocapture provides large mass benefits over all-propulsive
maneuvers that are typically used to enter capture orbits. Additionally, aerocapture is a quick maneuver
where the spacecraft enters the target orbit within a few maneuvers versus similar aero-assist maneuvers
like aerobraking, where the vehicle enters the desired orbit incrementally from a highly elliptical orbit and

usually takes a longer time.

An aerocapture maneuver consists of one atmospheric
portion of flight followed by two or more propulsive
maneuvers. The vehicle approaches in a hyperbolic
trajectory with the periapsis deep in the planetary
atmosphere. The atmospheric drag decreases the speed
of the vehicle below escape velocity, while the vehicle
maneuvers to the correct apoapsis and wedge angle of
the target orbit. After exit, a periapsis raise maneuver at
the first apoapsis and an apoapsis correction maneuver
at the next periapsis is conducted. The vehicle may also
have to adjust the longitude of the ascending node and

inclination angles.

Fig. 1. Aerocapture concept of operations [1]

Aerocapture provides orbit insertion system for SmallSats without large propellant mass
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realities of the rocket equation.

Aerocapture can alleviate the volume and mass penalties of traditional orbit insertion systems by using a
lighter aeroshell, such as deployable shown in Fig. 2, that can achieve orbit insertion with significant mass
savings compared to an all-propulsive solution.
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Aerocapture enables large missions, especially to the Ice Giants, with increase in on-orbit
mass and decrease in cruise time

The benefits of aerocapture are destination dependent, but some of the largest mass savings occur for
Uranus and Neptune. Due to the large hyperbolic velocities of interplanetary trajectories approaching
Uranus and Neptune, large amount of propulsion (approaching 1000 m/s of A4V) must be used to put a
spacecraft in science orbits around these planets. For Uranus and Neptune, the propellant mass fraction for
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the orbit insertion can be 40-60% of the total system mass. Aerocapture can reduce the propulsion needs
by dissipating energy in the sizable atmospheres of Uranus and Neptune without a significant mass increase
due to the need of an aeroshell. In fact, past studies by NASA have shown that the on-orbit mass can
increase by approximately 40% using aerocapture versus fully-propulsive orbit insertion [1].
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Additionally, aerocapture performance is relatively insensitive to increases in hyperbolic excess velocity,
the interplanetary trajectory can be designed to arrive at the Ice Giants faster, reducing the interplanetary
transit time and operations cost by as much as 3-5 years (15-30%).

Aerocapture together with gravity assist unlocks Enceladus, Titan, and Saturn missions
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